Troubleshooting

Dr. Benjamin Görling

Innovation with Integrity

• T1 noise

- Many times 2D spectra reveal noise streaks either as a result of sample spinning modulations or modulations from very strong signals
- These are consistent in S/N horizontally and can be subtracted, leaving only true signal behind.

1. Expand full vertical region of spectrum that contains only noise, no signals.

- Expand full vertical region of spectrum that contains only noise, no signals.
- In the Processing tab, under Advanced, select Calculate Projections.
 - a. Select Update rows/ columns from display
 - b. Click ok
 - c. Then Calculate Sum make note of Destination PROCNO.
 - d. This is the 2nd dataset you will use to subtract from the 2D
 - e. Click ok

- 1. Expand full vertical region of spectrum that contains only noise, no signals.
- 2. In the Processing tab, under Advanced, select Calculate Projections.
- 3. In Processing tab, under Advanced menu, select Add/Sub/Mult. spectra

- 1. Expand full vertical region of spectrum that contains only noise, no signals.
- In the Processing tab, under Advanced, select Calculate Projections.
- 3. In Processing tab, under Advanced menu, select Add/Sub/Mult. Spectra
 - 1. Define 2nd dataset you just made from previous slide

- 1. Expand full vertical region of spectrum that contains only noise, no signals.
- 2. In the Processing tab, under Advanced, select Calculate Projections.
- 3. In Processing tab, under Advanced menu, select Add/Sub/Mult. Spectra
 - 1. Define 2nd dataset you just made from previous slide
 - 2. From the Subtract 1D pull-down menu, select 1st option
 - 3. Confirm with OK

Truncation artifacts

Truncation artifacts

RUKER

B

BRÚKÉR

• Window functions

Window functions EM

- Exponential multiplication
- Parameter: LB
- Value typically positive
- Forces FID to go to 0
- Broadening out signals and noise
 - Increase apparent S/N
 - BUT: at the cost of resolution

Window functions ΕM

- Can increase apparent resolution as well
- BUT: at the cost of S/N

[le]

Window functions GM

- Gaussian multiplication
- Parameters: GB and LB
- LB must be negative (typically LB = -(half-width))
- GB between 0 and 1
- processing with [gfp]
- Does decrease S/N a bit, but there is no method experimentally to increase resolution to this extent

Window functions GM

http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-0534(2000)12:2%3C83::AID-CMR3%3E3.0.CO;2-H/full 23

Window functions TRAF

- This function is best applied to spectra with the correct acquisition time (AQ)
 - Best set to approximately 3 times longest T1
 - Signal is 1/3 FID; 2/3 noise
- traf function will increase resolution
- Parameter to modify is LB (range 0-1.0)

Apodization for 2D spectra

• In 2D experiments:

 Typical value for TD in F2 is 1k or 2k (this for a 1D proton that we normally acquire with 8k or 16k or more!)

 Typical value for TD in F1 is 128 or 256, resulting in a series of FIDs that show relaxation, just like an FID

Apodization for 2D spectra

- All of this truncation requires stronger apodization than exponential multiplication
 - Application of a sine or cosine function helps more
 - This allows us to emphasize the beginning portion of the FID and greatly reduce the noise seen towards the end of the FID
- Window function is sinm or qsin
 - sinm is sine multiplication

•
$$sinm(t) = sin\left(\left(\pi - \left(\frac{\pi}{SSB}\right)\right)\left(\frac{t}{AQ}\right) + \frac{\pi}{SSB}\right)$$

- qsin is sine the above function, squared
- SSB values:
 - SSB=0=1 applies pure sine function
 - SSB=2 applies pure cosine function
 - SSB>2 applies a mix sin/cos function

Step 1: evaluate the first FID

- On left is the 1st FID of an HMBC, note how signal builds from start, this uses the less common SSB=0,1 (these have the same effect)
- On right is the 1st FID of an HMQC. This looks more "normal" with max signal at beginning, and traditional decay. This uses SSB=2.

Window function – HMQC

• HMQC with incorrect apodization

Window function – HMBC

Lock phase

Lock phase

- That's what a lock should look like
- Lock phase set correctly

Wrong lock phase

- Lock phase is off
- Locking might not be possible
- Artifacts can occur in spectra with gradients

Wrong lock phase

- Lock phase off by 30°
- Lock has a knee during gradient experiment

Wrong lock phase

Gradient-COSY

ppm 0 8 -1 -2 - 3 .8 - 4 - 5 - 6 - 7 - 8 - 9 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

- COSYGPQF:
- Lockphase wrong by ca. 40°

Lock phase

- Manual:
 - Always adjust on locked sample (shimmed & non-saturated)
 - Optimize lock level or check lineshape of sharp line (dip at signal base) in gs mode with a gradient sequence
- Software:
 - loopadj (AU)
 - Tune during Topshim ([**topshim tunea**])
 - Autophase on BSMS display

B BSMS Control Suit	e								
Main Lock/Leve									
AUTO									
Phase	Power	Gain	Lock	Shim					
LOCK									
On-Off	Field	Drift	DC						
Phase	Power	Gain	Shift						
LOOP									
Gain	Time	Filter]						
SWEEP									
On-Off	Ampl	Rate]						
HELIUM LEVEL									
Last read	Read	Measure]						
SHIM COIL TEM									
Coil temp.									

- «overshoot» after gradient
- Lock power too high

Lock power set correctly

- «overshoot» after gradient
- Lock power too high
- 1. Reduce lock power
- 2. Press «STD BY»
- 3. Reduce power
- 4. Press «Reset»
- 5. If «overshoot» is still visible restart with 1.

B BSMS Control Suit	e			- • •
Main Lock/Leve	Shim Autoshi	im Service Log	Help	
AUTO				
Phase	Power	Gain	Lock	Shim
LOCK				
On-Off	Field	Drift	DC	
Phase	Power	Gain	Shift	
LOOP				
Gain	Time	Filter		
SWEEP				
On-Off	Ampl	Rate		
HELIUM LEVEL				
Last read	Read	Measure		
SHIM COIL TEM	PERATURE			
Coil temp.				
	P	ower [dBn	n]	
	Previo	us Actual	Step	
Absolute	-20.0	-20.0	+	Reset
Difference	e 0.4	0.0	-	
STD	ву		Stepsize	

- «overshoot» after gradient
- Lock power too high
- 1. Reduce lock power
- 2. Press «STD BY»
- 3. Reduce power
- 4. Press «Reset»
- 5. If «overshoot» is still visible restart with 1.

Lock power optimized

• TopShim

TopShim GUI

- Can be opened with command
 [topshim gui]
- Allows several options

S TopShim		- • ×
Shim Report S	ervice	
SHIM		
Dimension	● 1D ◎ 3D	
Optimisation	solvent's default	-
Optimise for	1H	-
Use Z6		
TUNE		
Before	off	-
After	off	-
Only		
STATUS		
not running		
Start	Stop Help	Close
Otart		

TopShim GUI – Additional Parameters

写 TopShim		
Shim Report S	ervice	
SHIM		
Dimension	ID 0 30	o c
Optimisation	solvent's defau	ilt 👻
Optimise for	1H	-
Use Z6		
TUNE		
Before	off	-
After	off	-
Only		
STATUS not running		
CONTROL-	Stop Hel	p Close

S TopShim 📃 🗉 🕰
Shim Report Service
GENERAL
About Help
GUI DEFAULTS
Save Load Restore
SETUP
Cf Edhead Gradamp
Info Reset
DIAGNOSTICS
Report
PREFERENCES
Additional parameters
External 🔍

写 TopShim		
Shim Report	Service	
SHIM Dimension Optimisation Optimise for	1D 3D solvent's default	•
Use Z6		
TUNE		
Before	off	-
After	off	•
Only		
	S	
STATUS		
not running		
CONTROL Start	Stop Help	Close

Useful Arguments

- ordmax= Sets the maximum total order of shim functions (default = 5) ordmax=3 limits shimming to Z-Z3 (1mm and 1.7mm probes)
 [topshim ordmax=8] (SmartProbe)
- **1H or 2H** Explicitly sets shimming nucleus
- **lockoff** Enables shimming with system unlocked
- o1p= Explicitly sets excitation frequency in PPM
 [topshim 1H lockoff o1p=2.49] (DMSO-h₆)
- selwid= Enables selective excitation of a bandwidth expressed in ppm Useful when shimming on a solvent with multiple signals
 [topshim o1p=1.93 selwid=0.5] (CD₃CN+D₂O)
- durmax = maximum duration per 1D field map acquisition (expressed in seconds) default = 7

Useful Arguments

- rga force receiver gain optimization before shimming
 [topshim rga durmax=60]
- tune* also shim on the lock before and/or after gradient shimming (tuneb shims X,Y,Z,XZ,YZ before running gradient shimming)
 [topshim tuneaz] (shims Z after running gradient shimming)
- **shigemi** Used to eliminate unreliable data at axial Shigemi tube walls when 1D shimming
- zlim sets the range in cm in the Z direction used for shimming
 [topshim shigemi zrange=-0.8,0.8] ('short' Shigemi)
- **plot** Saves data after completion in <TopSpin_home>/data/topshimData

... read about more in the Topshim manual!

Type [*help topshim*] from the Topspin command line.

Command Line Arguments

- Command line arguments
 - Multiple arguments can be used simultaneously

PAR	AMETERS
V	1H o1p=7 selwid=0.5 ordmax=3

• Similarly, these arguments can be executed directly from the topspin command line.

• Can be used in macros as well

- Check ²H pulse length
- Poor initial field homogeneity
 - Shims can be so bad that topshim cannot get data good enough to use for the calculation.
 - Try running topshim with sample spinning.
 - Try [*topshim tuneb*] to improve initial homogeneity.
- S/N too low
 - Try running [*topshim durmax=30*], 60, or even 120
 - Argument rga can also be added, [topshim rga durmax=30]
- Convection in a sample may cause topshim to fail.
 - Low viscosity solvents like chloroform and acetone are particularly susceptible.
 - Can manifest itself as "too many points lost during fit".
 - Use [*topshim convcomp*] to run topshim with convection compensation. > TS 2.1pl5.

- Convection and temperature gradients
- Raising temperature + filling height too high = problems

Convection Compensation

- In order to eliminate / reduce convection:
 - Sample filling height = < 40 mm
 - Increase VT gas flow (if possible)
 - Spin sample (if possible)
 - Lower sample temperature (if possible)
 - Use solvent with higher viscosity (if possible)
 - Use shigemi or smaller sample diameter

- Troubleshooting Tips
 - Topshim deletes data immediately after execution. The command
 [topshim plot] can be used to save topshim data.

• Data located in <topspin_home>\data\topshimData

- Troubleshooting Tips
 - Data is stored in serial file. Long echo time in FID 1 and short echo time in FID 2. Process with [*fmc*]

🍓 fmc	<u> </u>				
You are about to execute a 1D processing command on multi-dimensional acquisition data (ser file). Please specify the fid number in the ser file to be processed and the destination PROCNO for the result.					
FID # [12] =	1				
PROCNO =	998				
	OK Cancel Help				

- Profiles should have similar intensity. If long echo time spectrum is <0.5 then there may be homogeneity issues.
- For homogeneity issues try

[topshim tuneb] [topshim 3d]

- For 2H, check pulse length
- Type [*help topshim*] in Topspin command line to open topshim manual

• .info files

How to choose a pulse program

- .info files can be found in the pp folder
 <topspinhome>\exp\stan\nmr\lists\pp
- [edpul *.info]
- Available file:
 - Param.info
 - Pulprog.info
 - Relations.info
 - Update.info

🖕 Pulse Programs		X
<u>File Options</u> <u>H</u> elp	Source = C:\Bruker\TopSpin3.5pl6\exp\stan	\nmr\lists∖pp ▼
Find file names *.info	Exclude:	Clear
Class = Any	Dim = Any Show Recommended	
Type = Any 🗸	SubType = Any SubTypeB = A	ny 🔻
Param.info Pulprog.in	fo Relations.info Update.info	
	Edit Graphical Edit Set PUL	PROG <u>C</u> lose

Param.info and Relations.info

Param.info (C:\Bruker\TopSpin3.5pl6\exp\sta	an\nmr	\lists\pp)			
<u>F</u> ile <u>E</u> dit <u>S</u> earch					
Graphical_Edit Set PULPROG					
1 ;Param.info					
2 ;avance-version (16/07/28)					
3;					
4 ;The following convention is used	A R	elations.info (C:\	Bruker\TopSpin3.5pl6\exp\sta	an\nmr\lists\pp)	X
5 ; and loop counters throughout the					-
6;	<u>F</u> ile	Edit Search			
/ ; \$CLASS=HighRes Info		Graphical_Edit	Set PULPROG		
g					
10		;Relations.i	nfo		
11 ;p10 :	2	; avance-vers.	ion (16/07/28)		E
12 ;pl1 : f1 channel - power level fo	4	/ ·SCLASS=High	Deg Info		
13 ;pl2 : f2 channel - power level fo	5	: \$COMMENT=	Keb Info		
14 ;pl3 : f3 channel - power level fo	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
15 ;pl4 : f4 channel - power level fo	7				
16 ;p15 : f5 channel - power level fo	8	;The followi	ng convention is used fo	r power levels, pulses, delays	
17 ;pl6 : f6 channel - power level fo	9	; and loop co	unters in the different	relation files for prosol:	
18 ;p17 : f7 channel - power level fo	10	;			
19 ;p18 : f8 channel - power level fo	11	;all = defau	lt + lcnmr + triple + tr	iple2 + triple_c + triple_na	
20 ;p19 : f1 channel - power level fo	12	;triple* = t	riple + triple2 + triple	_c + triple_na	
22 ;pli0. If channel - power level for	13	;! = excep	t		
23 :p112: f2 channel - power level for	14	1			
24 ;pl13: f2 channel - power level fo	15	;prosol par.	rel. file	pulseprogram parameter	
25 ; or f2 channel - power level fo	17	/ • DR	all	de	
26 inline f? abornol - novor lovol fo	18	:D grad	all	di6: delay for homosnoil/gradient recovery	
	19	;		aro, actay for homopote, graating reactery	
	20	;PW90(F1)	all	рО :	
	21	;PW90(F1)	all	p1 : f1 channel - 90 degree high power pulse	
	22	;PW90(F1)	all(!triple_c)	p27: f1 channel - 90 degree pulse at p118 (3-9-19 watergate)	
	23	;PW90*2(F1)	all	p2 : f1 channel - 180 degree high power pulse	
	24	;PW90(F2)	all	p3 : f2 channel - 90 degree high power pulse	
	25	;PW90*2(F2)	all	p4 : f2 channel - 180 degree high power pulse	-
	26	1 • DUUD (#2)	all	nil fi abannal - 00 daaraa high navar nulaa	1:1

Update.info

🖕 Upo	Update.info (C:\Bruker\TopSpin3.5pl6\exp\stan\nmr\lists\pp)		<
<u>File</u>	e <u>E</u> dit <u>S</u> earch		
Gra	Graphical Edit Set PULPROG		
1	1 ;Update.info		
2	2 ;avance-version (16/08/01)		
3			
4	4 ;difference to previous versions		
- J - C	J ;		
7	7 · SCOMMENTE		
8	8		
9	9 ***********		
10	differences to 16/07/26		
11	11		
12	12 added dr tocsy hetcor dual receive		
13	13		
14	4		
15	L5 differences to 16/06/03		
16	16		
17	added dr_hc_fc_hmbc dual receive		
18	18 dr_hc_fc_hmqc		
19	l9 dr_hc_fc_hsqc		
20	dr_pansy_cosy		
21	(1 20		
22			
23	allierences to 10/04/00		
25	25 corrected treevetflowsi 2 timing (else case)		
25	26 Controlled (Else Case)		-
		1:1	

Pulprog.info

Pulprog.info (C:\Bruker\TopSpin3.5pl6\exp\sta	in\nmi	\lists\p			
<u>F</u> ile <u>E</u> dit <u>S</u> earch					
Graphical_Edit Set PULPROG					
1 Pulprog info					
2 ;avance-version (13/08/21)					
3;			to the second se		,
4 ;\$CLASS=HighRes Info	🍦 P	ulprog.i	nfo (C:\Bruker\TopSpin3.5pl6\exp\stan\nmr\lists\pp)		
5 ; \$COMMENT=	File	Edit	Search		
6					
7		Graphica	al_Edit Set PULPROG		
8 ;For a pulseprogram the first chare	23	ad	using adiabatic spinlock		
9 ;sometimes more) specify the type d	24	ar	experiment for aromatic residues		
10 ;NOESY etc Further properties of	25	at	adiabatic TOCSY		
11 ;indicated by a two-character code,	26	bi	with bird pulse for homonuclear J-decoupling	-	
12 ;in alphabetical order. For 2D expe	21	իր	using bipolar gradients		Ξ
13 ;phase sensitive or echo-antischo;	20	cc	cross correlation experiment	ļ	
15 ;hut not for homonuclear ones (even	29	cn	tis and Mis dependent information in different indirect dimensions		
16 ; In case of redundant information a	31	CU CD	with COST traisfer		
17 :ommitted.	32	cp ct	eonstant time		
18 ;	33	cv	convection compensated		
19 ;The two-character codes used are t	34	CW	decoupling using cw command		
20	35	cx	using CLEANEX PM		
21	36	dc	decoupling using cpd command		
22 ac accordion type experiment	37	d£	double quantum filter		
23 ad using adiabatic spinlock	38	di	with DIPSI mixing sequence		
24 ar experiment for aromatic resi	39	dh	homonuclear decoupling in indirect dimension		
25 at adiabatic TOCSY	40	dw	decoupling using cpd command only during wet sequence		
76 ki with kind nulao fan homanual	41	dq	double quantum coherence		
	42	ea	phase sensitive using Echo/Antiecho method		
	43	ec	with E.COSY transfer		
	44	ed	with multiplicity editing		
	45	es	excitation sculpting		
	46	et	phase sensitive using Echo/Antiecho-TPPI method		
	47	fb	using 12 - and 13 - channel		_
	48	Id	using fl - and f3 - channel (for presaturation)		*
			1:1		

HSQC

Folding

Folding

Folding is not a problem for 1D spectra in modern spectrometers due to very efficient filters.

BUT

There are no filters in the second dimension!

Folding will occur in 2D spectra if experimental parameters are not set well!

Folding and aliasing

Folding and aliasing

Folding and aliasing

How to find out if a peak is folded or aliased?

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.