1D Processing

Dr. Benjamin Görling

Innovation with Integrity

How to get a good spectrum?

1-Click processing

1-Click processing options

<u>F</u> ile	<u>Start</u> <u>P</u> rocess A <u>n</u> alys	e P <u>u</u> blish	<u>∨</u> iew	<u>M</u> anage	0		
	<mark> </mark>	djust Phase 🗢	🔥 Calib	. A <u>x</u> is ▼	Pick	P <u>e</u> aks ▼ ∫ <u>I</u> n	tegrate ▼ A <u>d</u> vanced ▼
	Configure Standard <u>Processing</u> (Window M <u>u</u> ltiplication (wm) Fourier <u>T</u> ransform (ft) <u>F</u> ourier Transform Options (ftf)	vroc1d)				<mark>. ∧ Pro</mark>	<u>c</u> . Spectrum <mark></mark> √
	Start Automation AU Program (xa	ip)	proc1d				
			Press 'Save' to Changed option one-click 'Proc. Exponential M	i just change the p ns will be effective . Spectrum' button lultiply (em)	rocessir when p	ng options. ressing the LB [Hz] =	0.3
			Fourier Trans	form (ft)	V		
			Auto - Phasing Set Spectrum	g (apk) Reference (sref)	V		
			Auto - Baselin	e Correction (abs	n) 🔲	Include integration =	no
			Plot (autoplot))		LAYOUT =	+/1D_H.xwp
		_	Warn if proces	ssed data exist	✓		
							Save Execute Cancel

Processing commands

- [ft] Fourier transformation
- [em] multiplication with exponential window function
- [**pk**] phase spectrum
- [fp] [ft] + [pk]
- [ef] [em] + [ft]
- [efp] [em] + [ft] + [pk]

Fourier transformation

Resolution

 To get a good resolution you need enough data points TD (acquisition) and SI (processing).

•
$$SI = \frac{TD}{2}$$

Resolution

 To get a good resolution you need enough data points TD (acquisition) and SI (processing).

•
$$SI = \frac{TD}{2}$$

$$SI = 1k$$

Signa										AQ: TD:	1s 16k	
Signa										SI: Res.:	8k 0.97ŀ	Ηz
		Noi	60							AQ: TD:	4s 64k	
A Real Provide Street			50							SI: Res.:	32k 0.24ŀ	Ηz
										AQ: TD:	16s 256k	
										SI: Res.:	128 0.06H	łz
1 2	3 4	l 5	6	7	8	9 9	10	11	12	13 1	4 15	16 s

								AQ TD	:	1s 16k	
								SI Res.	:	8k 0.97Hz	<u>z</u>
								AQ TD	:	4s 64k	
								SI Res.	:	32k 0.24Hz	2
								AQ TD	:	16s 256k	
								SI Res.	:	128 0.06Hz	
1 2 3 4	5	6 7	8	9	10	11	12	13	14	15	16 s

Parameters

• Parameters are :

size <mark>SI</mark>

spectrum reference frequency SR spectral resolution HzpPt

- SI is the amount of data points of the processed data. Typically TD/2. You can use the same value as for TD to get a better resolution. This is called zero filling.
- SR is the shift for referencing the spectrum; interpreted by plot routines for generating the axis (scale) calibration
- HzpPt is the spectral resolution, signals that are closer together than HzpPt /2 cannot be resolved;

Window function [wm]

<u>F</u> ile	<u>Start</u> <u>Process</u> A <u>n</u> alyse F	P <u>u</u> blish <u>V</u> iew <u>M</u> anage 🕢
	<mark> Pro<u>c</u>. Spectrum </mark>	nase ᢦ 💦 Calib. A <u>x</u> is ᢦ 🎊 Pick P <u>e</u> aks ᢦ 🥤 Integrate ᢦ A <u>d</u> vanced v
	Configure Standard <u>P</u> rocessing (proc1d) Window M <u>u</u> ltiplication (wm) Fourier <u>T</u> ransform (ft)	<mark> Pro<u>c</u>. Spectrum</mark> ▼
	<u>Fourier Transform Options (ftf)</u> Sta <u>r</u> t Automation AU Program (xaup)	Window function - em
		Options Manual window adjustment
		Required parameters Window function type WDW = exponential Line broadening LB [Hz] = 0.3 Gaussian max. position 0 <gb<1 =<="" td=""> 0 Sine bell shift SSB (0.1.2,) = 2</gb<1>
		Left trapezoid limit $0 < TM1 < 1 = 0$ Right trapezoid limit $0 < TM2 < 1 = 0$ <u>OK</u> <u>Cancel</u> <u>H</u> elp

Window functions

• Digital Filtering

[**em**], [**gm**]

• There are several window functions, which can be used to optimize the spectrum.

Function	Command	Factor	Range
Exponential	em	LB	>0
Gaussian	gm	LB and GB	LB<0, 0 <gb<1< td=""></gb<1<>
Sine bell	sinm	SSB	0, 1, 2,
Squared sine	qsin	SSB	0, 1, 2,

• Sine bell and squared sine need to be used for 2D spectra!

Effect of window functions

Adjust Phase

- Manual phase correction with [.ph]
- Automatic phase correction with [apk]/[apk0]
- Uses previously defined phase correction values [pk]

<u>F</u> ile <u>S</u> tart	Process A	<u>n</u> alyse P <u>u</u> blish	<u>∨</u> iew <u>N</u>	<u>M</u> anage 🕜				1
∫ ∧ Pr	o <u>c</u> . Spectrum ▼	🔶 Adjust Phase 🗸	A Calib. A	<u>x</u> is ▼	aks ▼	∫ <u>I</u> ntegrate ~	A <u>d</u> vanced ▼	
1 exam1d_1H 1	1 C:\Bruker\TopSpi	n3.5pl7\examdata						
Spectrum ProcP	ars AcquPars Title	PulseProg Peaks Integr	als Sample S	tructure Plot Fid				
🔊 S 1,2, M E								
Reference Window	Phase correc	tion						^
Phase	PHC0 [degrees]	63.900		Oth order co	prrection f	or pk		
Baseline	PHC1 [degrees]	0		1st order co	rrection f	or pk		
Fourier	PH_mod	no 🔻		Phasing mo	des for trf	f, xfb,		
Peak	Baseline corr	ection						=
Deconvolution	ABSG	5		Degree of p	olynomial	for abs (05)		-
Miscellaneous	ABSF1 [ppm]	10.00000		Left limit for	absf			
User	ABSF2 [ppm]	0		Right limit fo	or absf, ab	os1, abs2		
	BCFW [ppm]	1.00000		Filter width f	for bc (sfil	/qfil)		
	COROFFS [Hz]	0		Correction of	offset for E	BC_MOD=spol etc.		
	BC_mod	quad 🔹		Fid baseline	modes for	or em, ft, xfb,		
	Sourier trans	form						
	TDeff	0		Number of fi	id data po	oints used by ft		
	STSR	0		First output	point of s	trip transform		
	STSI	0		Total numbe	er of outp	ut points of strip tran	sform	
	ME_mod	no 🔻		Linear predi	ction for f	ft, xfb,		
	NCOEF	0		Number of L	.P coeffici	ents		
	LPBIN	0		Number of o	utput poir	nts for LP		
	TDoff	0		Number of b	ack-pred	icted points		

• Use previously defined phase correction values [pk]

Calibrate Axis

- Open reference dialog with [cal]
- Automatic referencing [sref]
- Reference manually [.cal]

Axis calibration - cal
Options Manual calibration Automatic calibration
<u>OK</u> <u>Cancel</u> <u>H</u> elp

Automatic calibration

Automatic calibration

Manual calibration

Spectrum ProcPars Act	ruker\TopSpin3.5pT/\examdata quPars Title PulseProg Peaks	s Integrals Sample S	tructure Plot Fid			
						- 8
					Zoom	into signa
					that s	hould be
					us	ed as
					refe	erence.
						- 6
						- 8
						-
						-
				· ·		o

Manual calibration

<u> </u>	le <u>S</u> tart	Process	A <u>n</u> alyse	P <u>u</u> blish	View	Manage			Advensed	1
↓ 1. _	exam1d_1H 1 1	2. Spectrum →	pin3.5pl7\exa	Phase ▼ mdata	Callb.		(PICK P <u>e</u> aks		▼ A <u>a</u> vanced ▼	
7.2 DEF Def	2746 ppm / 3638. FINE REFERENCE F fine: Left-click	2333 Hz / 500.1: REQUENCY : inside data wir	3363823 MHz /	Index = 810.	1					200 - [rei]
Select s	signal v chem	and nical						Calibrate	oration frequer ency [ppm] 7	16 Cancel
										- 8
	7	7.40	7.35	1 1 1	7.30	7.	25	7.20	7.15	[mqq]

Manual calibration

Spectrum P	ProcPars AcquPars Title PulseP	rog Peaks Integrals Sample	Structure Plot Fid	
			7.1598	- 200 - -
				- - 150 -
				- - 6 -
				- - - - -
	~			

Caution!

If you want to determine a frequency for

selective experiments

SR needs to be set to 0!

SR is only used for visualisation!

Pick Peaks

- Automatic peak picking of full spectrum [**ppf warn**]
- Automatic peak picking of displayed region [**pps**]
- [.pp] open manual peak picking

Pick Peaks

Pick Peaks

<u>F</u> ile	<u>S</u> tart	<u>P</u> rocess	A <u>n</u> alyse	P <u>u</u> blish	⊻iew	Manage 📀				1
	A Pro	<u>c</u> . Spectrum ·	🗕 🔷 Adju	st Phase v	📌 Calib.	A <u>x</u> is ⊸	ks √ ∫ <u>I</u> ntegr	rate 🗢	A <u>d</u> vanced ▼	
1 exam	n1d_1H 1 :	1 C:\Bruker\Top	oSpin3.5pl7\e>	kamdata						- 0 ×
Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid										
Peak	▼ v(F1) [ppm] Inte	nsity [abs]			A	nnotation			
1	1	8.2706	157292.88							
2	2	8.2512	161750.83							
3	1	8.0080	176332.21			Show spectrum	n			
5	5	7.6314	185004.26			Show Spectrum				
6	6	7.6159	193454.27			Expand spec	trum	-		
7	7	7.4701	190291.50			Delete				
8	3	7.4528	197267.36			Edit annotation	n			
						Remove		•		
						Define as refe	rence	•		
						Annotate peak	(S	•		
						Shift peaks				
						Reset intensiti	es	•		
						Show detailed	information			
						Properties				
						Сору				
						Export				
						Import				
						Print				
						Print preview				
						Table properti	es			
						(

Pick Peaks

	<u>F</u> ile	<u>S</u> tart <u>P</u> ro	ocess A <u>n</u> alyse	P <u>u</u> blish	<u>V</u> iew	<u>M</u> anage	2			1
		Λ Pro <u>c</u> . Spe	ectrum 🗢 🔿 Adj	ust Phase v	Å Calib	. A <u>x</u> is ▼	Pick P <u>e</u> aks ▼	∫ <u>I</u> ntegrate ~	A <u>d</u> vanced ▼	
5	1 exam	1d_1H 1 1 C:\Br	uker\TopSpin3.5pI7\	examdata						
	Spectru	Im ProcPars Acq	uPars Title PulsePr	og Peaks Integ	grais Sample	e Structure Pl	ot Fid			
	Peak	▼ v(F1) [ppm]	Intensity [abs]				Annotation	1		
	1	8.2706	157292.88	Peak 1						
	2	8.2512	161750.83	Peak 2						
	3	8.0225	178332.21	Peak 3						
	4	8.0080	183574.56	Peak 4						
	5	7.6314	185004.26							
	6	7.6159	193454.27							
	/ 0	7.4701	190291.50							
	0	1.4320	197207.30							
	I rowe sele	icted								

1 exam1d_1H 1 1	C:\Bruker\TopSpin3.5pI7\e	xamdata			- 0 ×
Spectrum ProcPar	s AcquPars Title PulsePro	g Peaks Integrals Samp	le Structure Plot Fid		
	— Peak 1 — Peak 2	− Peak 3 ← Peak 4	− 7.6314 ← 7.6314		 - -
		17	11	11	- - & -
					- - 8 - - -
					- - 4
		0		U.	- 8 - -
	M		M		o

Parameters

• Parameters are :

intensity of reference peak (CY) minimum relative intensity (MI) maximum relative intensity (MAXI) peak picking sensitivity (PC) peak sign (PSIGN)

- CY defines the relative intensity of reference peak, also used for plotting (in cm).
- MI and MAXI must be chosen relative to CY, they define the smallest and largest peak that is picked.
- PC is the sensitivity for peak picking, only peaks that are larger than noise × PC are picked.
- **PSIGN** defines if only positive or negative peaks or both are picked

Automatic Peak Picking Options [pp]

🌳 Peak picking - pps	X									
Options										
Auto-Pick peaks on displayed spectrum region										
Auto-Pick peaks on full spectrum										
Define regions / peaks manually, adjust MI, MAXI										
O Auto-Pick peaks in predefined regions (file 'peakread')	ng')									
Calculate width of currently displayed peak										
Required parameters										
Left picking limit F1P =	9.8757									
Right picking limit F2P =	-1.1104									
Intensity of reference peak CY [rel] =	100									
Minimum intensity MI [rel] =	0.001									
Maximum intensity MAXI [rel] =	100									
Detection sensitivity PC =	5									
Fraction of peak height for width calc. [01] =	0.5									
Pick peaks of sign PSIGN =	both 🔻									
Reference peak selection mode PSCAL =	global 🔻									
Region file for PSCAL = sreg/psreg: SREGLST = 1	H.CDCl3									
<u>OK</u>	<u>Cancel</u> <u>H</u> elp									

Integrate

- Automatic integration [int auto]
- Automatic integration with baseline correction [abs]
- [.int] open manual integration mode

Manual Integration

Manual Integration

Manual Integration

Integrals

C Plo <u>c</u> . Spec	aun 👻 🛛 😽 Aujust Pha		D. A <u>⊼</u> is ♥	MA FICK Pea		
exam1d_1H 1 1 C:\Bruk	er\TopSpin3.5pl7\examdat	a Integrals or m				
Dectrum ProcPars Acque	Pars Title PulseProg Peak					
-Integral 1	7952946.33	1 0000		8 2896		
Integral 2	8741599.39	1.0992	0	8.0320		
Integral 3	7790588.66	0.9796	0	7.6377		
Integral 4	7907330.26	0.9943	0	7.4538		
Integral 5	104145465.43	13.0952	0	5.2986	Expand	
				=	Show spectrum	•
					Expand spectrum	•
					Delete	
					Define as reference	
					Calibrate by reference	
					Сору	
					Export	
					Import	
					Print	
					Print preview	
					Table properties	

Parameters

- Parameters are : integral extension factor (AZFE) minimum distance between peaks (AZFW) integral sensitivity factor (ISEN) integral sensitivity factor (ABSL)
- Integral regions are extended at both sides by AZFE ppm. If this extension causes adjacent regions to overlap, the center of the overlap is used as the limit of the two regions.
- If peaks are more than AZFW apart, they are treated independently.
- Only the regions of integrals which are larger (area) than the largest integral divided by ISEN are stored.
- Data points greater than ABSL×(standard deviation) are considered spectral information

Automatic Integration [int]

🖕 Integration - abs+li	X
Options	
Define integral regions manually	
Auto-find regions, integrate & display result	
Integrate existing regions (file 'intrng') & display result	
List peaks and integrals (using regions file 'intrng') within the displayed region	on
List peaks and integrals (using regions file 'intrng') of the entire spectrum	
Integrate a list of spectra	
Required parameters	
Integration sensitivity factor ABSL (0100) =	20
Minimum separation between independent integral regions AZFW [ppm] =	0.05
Integral region extension factor AZFE [ppm] =	0.1
Integral sensitivity factor with reference to the largest integral ISEN (>0) =	1024
Degree of polynomial ABSG (05) =	5
Left spectral range limit F1P [ppm] =	9.87574863433837
Right spectral range limit F2P [ppm] =	-1.1104046957893
Scale 1D integrals relative to a reference dataset INTSCL (-1, 0, >0) =	1
Automatic baseline correction of integrals (if regions auto-detected!) INTBC =	yes 🔻
<u>_O</u> K	Cancel Help

Advanced

<u>F</u> ile <u>S</u> tart <u>P</u> rocess A <u>n</u> alyse P <u>u</u> blish	<u>V</u> iew <u>M</u> anage 🕜	
Λ Pro <u>c</u> . Spectrum ▼ Λ♦ Adjust Phase ▼	K Calib. A <u>x</u> is →	s ▼ ∫ <u>I</u> ntegrate ▼ A <u>d</u> vanced ▼
	Process Dataset List (serial)	Manual correction mode (.basl)
Advanced 🗢	Integrate Spectra <u>L</u> ist (intser)	Repeat Correction Using File base_info (bcm)
	ROI View of Spectra List (vregs)	Automatic Using Polynomial of Degree ABSG (abs n)
	Add/Sub./Mult. Spectra (adsu)	Like abs, Only In Range F1/F2 (absf n)
	Reference Deconvolution (.refdcon)	Automatic, Alternate Algorithm (absd n)
	Correct Baseline	Setup Spline File baslpnts (.baslpts)
	Special Transforms	Spline-Correct Using bas/pnts (sab)
	Miscellaneous Operations	Correct FID Using Parameter BC_mod (bc)

- [abs] performs automatic baseline correction and integration
- [abs n] performs automatic baseline correction (no integration)
- [.basl] manual baseline correction mode
- [bas] opens dialog for baseline correction

Toggle spectrum overlay

Measure distances

Dual display

Toggle axis units and grid

Show full spectrum, reset intensity

<u>File Start Process Analyse Publish View M</u> anage	1
Create Dataset 📓 Find Dataset 🔄 Open Dataset 📭 Paste Dataset 📓 Read Pars.	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1 exam1d_1H 1 1 C:\Bruker\TopSpin3.5pl7\examdaa	×
Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid	
	- E
	- 88 -
	- 93 -
	- 9 - 7
	- - - 8
I I I I I I I I I I I I I I I I	- - - 0
	-
Show full spectrum, reset intensity scale [.all]	

Show full spectrum, do not reset intensity

MM

Reset intensity

Retain scale and intensity

<u>F</u> ile <u>S</u> tart <u>P</u> rocess A <u>n</u> alyse P <u>u</u> blish <u>V</u> iew <u>M</u> anage	1
C <u>r</u> eate Dataset 📓 Find Dataset 🕥 Open <u>D</u> ataset 🔽 Pas <u>t</u> e Dataset 🖹 R <u>e</u> ad Pars.	
1 Juice_3 10 1 Z:\data\demo\nmr	_ • ×
Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid	
	[re] -
	- 19-
	- - 88 -
	- - 8 - -
	- - 6
A A A A A A A A A A A A A A A A A A A	- - - - - - - - - - -
	~^{+} •
4.2 4.0 3.8 3.6 3.4	[ppm]

Set transmitter frequency by cursor

<u>F</u> ile	<u>S</u> tarl	<u>A</u> cquire	Process	A <u>n</u> alyse	P <u>u</u> blish	<u>∨</u> iew	<u>M</u> anage	0			1 <mark>2 L</mark> I	ВТ
	Λ	Pro <u>c</u> . Spectru	um 🗢 🐴 Adjus	t Phase -	Calib.	A <u>x</u> is ▼	Nick Peak	ks √ ∫ <u>I</u> nte	egrate ▼ A <u>d</u> va	anced 🗢		
		*8 *2 📢 /8 /2 🛓			¥ŵ₹ ≯♥₹	Hz ppmi L→		₩~ E9 🖷 @ // 🕷 🖉	≓ <mark>↓</mark> ₂ ↓ ∢	tg topshim		
2 Avanc	e_Training	50 1 C:\NMRData	\data\bgoe\nmr									
↓ <mark>↓</mark> •												
						1						E E
												- 4
												- 2
									1			- 2
												- ∞
												. – o
												- 4
												- 0
					ليسامياليد					VL		+ °
	15	1 1	1 1	10	1 1	I	5	- I I	1 1	0	[ppm]	0

Set transmitter frequency by cursor

▲ Proc. Spectrum ▲ Adjust Phase ▲ Calib. Agis ▲ Proc. Place Adjust Phase ■ 18 + 2 ● 18 / 2 ● 18 / 2 ● 19 ● 10 ■ 18 + 7 ● 18 / 2 ● 18 / 2 ● 100 ● 100 ■ 18 + 7 ● 18 / 2 ● 18 / 2 ● 100 ● 100 ■ 19 ● 18 / 2 ● 18 / 2 ● 100 ● 100 ■ 19 ● 18 / 2 ● 18 / 2 ● 100 ● 100 ■ 19 ● 18 / 2 ● 19 ● 100 ● 100 ■ 19 ● 18 / 2 ● 100 ● 100 ● 100 ■ 19 ● 19 ● 100 ● 100 ● 100 ■ 19 ● 100 ● 100 ● 100 ● 100 ■ 19 ● 100 ● 100 ● 100 ● 100 ■ 19 ● 100 ● 100 ● 100 ● 100 ■ 190 ● 100 ● 100 ● 100 ● 100 ■ 190 ● 100 ● 100 ● 100 ● 100 ■ 190 ● 100 ● 100 ● 100 ● 100 ■ 190 ● 100 ● 100 ● 100	<u>File Start A</u> cquire <u>Process</u> A <u>n</u> alyse P <u>u</u> blish <u>V</u> iew <u>M</u> anage	1 <mark>2 L</mark> B T
2 Avance_Training 50 1 CMMRData/data/bgoc/um 4-80 ppt 1794.79 Hz / 400.131795 MHz ST 3701/01 PRSQUENCE2 FROM CURBOR POSITION Define SF01/01 Irequencies SF01 [MHz] = 400.131774 01 02 03 01 02 03 Cancel	Λ Proc. Spectrum Adjust Phase	
2 Avance, Training 50 1 C.NMRDataldata/bgselvnur 4.68 ppa / 1794.79 Hz / 400.131795 HHz Bart SPD1/01 FREQUENCES FROM CUBSOR POSITION Define : Left-click inside data window Bart SPD1/01 frequencies SFO1 [MHz] = M1/2/3 [Hz] = Image: Image		
4.49 ppa / 1794.79 Hz / 400.131795 HHz SET SF01/01 FREQUENCIES FROM CURSOR POSITION Petine: Left-cluck inside data window Define SFO1/01 frequencies SFO1 [MHz] = 400.131774 O1/2/3 [Hz] = 1774.50 O1 O2 O3 Cancel	Avance_Training 50 1 C:\NMRData\data\bgoe\nmr	
↓ 01/02/03 ▶ Define SF01/01 frequencies SF01 [MHz] = 400.131774 01/2/3 [Hz] = 1774.50 ● 01 ● 02 ● 03 € cancel	4.49 ppm / 1794.79 Hz / 400.131795 MHz SET SF01/01 FREQUENCIES FROM CURSOR POSITION Define: Left-click inside data window	
↓ 01/02/03 Define SFO1/01 frequencies SF01 [MHz] = 400.131774 01/2/3 [Hz] = 1774.50 01 02 03 Cancel		-
SFO1 [MHz] = 400.131774 01/2/3 [Hz] = 1774.50 01 02 03 Cancel	Control of the second s	- 12 -
01/2/3 [Hz] = 1774.50	SFO1 [MHz] = 400.131774	- 2
	O1/2/3 [HZ] = 1774.50 O1 O2 O3 Cancel	- œ
		- σ
		-4
		- ~
		• • • • • • • • • • • • • • • • • • •

Set SW to current region and O1 in center

<u>E</u> ile	e <u>S</u> ta	art <u>A</u>	<u>A</u> cquire	Process	s A <u>n</u>	alyse	P <u>u</u> blish	<u>V</u> iew	<u>M</u> ana	ige	0				1 2 L B T
		Pro <u>c</u> .	Spectru	ım 🗢 🐴 A	Adjust P	'hase v	A Calib.	A <u>x</u> is ▼	t Pick	P <u>e</u> aks	✓ ∫ Integ	grate 🗢	A <u>d</u> vanced ▼		
		*8 * /8 /	2 <table-cell></table-cell>		© المع			Hz ppm L			₩~ 🕒 🖷 ∥ 🕸 // _{Hz}	₩	tg topshim		
2 A	/ance_Traini	ing 50 1 C	:\NMRData\	\data\bgoe\nmr		1									
Spe	Pr	rocPars	AcquPars	Title Pulse	Prog Pea	iks Integr	rals Sample	Structure	Plot Fid /	Acqu	:				
															_ <u>Ľ</u>
															- 4
					Í	<u>.</u>					•				_
															- 6
							New sett	ing of S	W, SFO1	from c	urrent regi	on			
						6	SW = 8.9	9384 pp	m						- 6
							SWH = 3	576.538	3 Hz	_					
							01 = 17 SF01 =	13.60 Hz 400.131	z / 4.282€ 7136 M⊦	5 ppm Iz					- o
															-
												_			- w
											Close	2			-
									:						4
											· · · · · · · · · · · · · · · · · · ·				-
															- 0
														A HAMA	
	![ر	سالعيا	<u> </u>		/IU///	™ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		_1~1		v V	* VV 0000	¬vv° ∖	∧•
	1	8	-	T.	· · ·	6		1	4		· I	i	2	I	[ppm]

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.